Parallelization of Non - Rigid Image Registration
نویسنده
چکیده
Title of Document: PARALLELIZATION OF NON-RIGID IMAGE REGISTRATION Mathew Philip, Master of Science, 2008 Directed By: Professor Raj Shekhar, Dept of Diagnostic Radiology (University of Maryland, Baltimore) and Dept of Electrical and Computer Engineering Non-rigid image registration finds use in a wide range of medical applications ranging from diagnostics to minimally invasive image-guided interventions. Automatic non-rigid image registration algorithms are computationally intensive in that they can take hours to register two images. Although hierarchical volume subdivision-based algorithms are inherently faster than other non-rigid registration algorithms, they can still take a long time to register two images. We show a parallel implementation of one such previously reported and well tested algorithm on a cluster of thirty two processors which reduces the registration time from hours to a few minutes. Mutual information (MI) is one of the most commonly used image similarity measures used in medical image registration and also in the mentioned algorithm. In addition to parallel implementation, we propose a new concept based on bit-slicing to accelerate computation of MI on the cluster and, more generally, on any parallel computing platform such as the Graphics processor units (GPUs). GPUs are becoming increasingly common for general purpose computing in the area of medical imaging as they can execute algorithms faster by leveraging the parallel processing power they offer. However, the standard implementation of MI does not map well to the GPU architecture, leading earlier investigators to compute only an inexact version of MI on the GPU to achieve speedup. The bit-slicing technique we have proposed enables us to demonstrate an exact implementation of MI on the GPU without adversely affecting the speedup. PARALLELIZATION OF NON-RIGID IMAGE REGISTRATION
منابع مشابه
بهبود سرعت "انطباق مبتنی بر روش برش گراف" جهت انطباق غیر صلب تصاویر تشدید مغناطیسی مغز
Image processing methods, which can visualize objects inside the human body, are of special interests. In clinical diagnosis using medical images, integration of useful data from separate images is often desired. The images have to be geometrically aligned for better observation. The procedure of mapping points from the reference image to corresponding points in the floating image is called Ima...
متن کاملCompensation of brain shift during surgery using non-rigid registration of MR and ultrasound images
Background: Surgery and accurate removal of the brain tumor in the operating room and after opening the scalp is one of the major challenges for neurosurgeons due to the removal of skull pressure and displacement and deformation of the brain tissue. This displacement of the brain changes the location of the tumor relative to the MR image taken preoperatively. Methods: This study, which is done...
متن کاملA Novel Subsampling Method for 3D Multimodality Medical Image Registration Based on Mutual Information
Mutual information (MI) is a widely used similarity metric for multimodality image registration. However, it involves an extremely high computational time especially when it is applied to volume images. Moreover, its robustness is affected by existence of local maxima. The multi-resolution pyramid approaches have been proposed to speed up the registration process and increase the accuracy of th...
متن کاملNew Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor
Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing scientific researches construct this pseudo-CT image using the registration techniques. However, these techniques suffer from the local minima of the non-rigid deformation energy f...
متن کاملOptimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps
Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...
متن کامل